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We describe a “master equation” analysis for the bond amplitudes h�r� of an RVB wave function. Starting
from any initial guess, h�r� evolves—in a manner dictated by the spin Hamiltonian under consideration—
toward a steady-state distribution representing an approximation to the true ground state. Unknown transition
coefficients in the master equation are treated as variational parameters. We illustrate the method by applying
it to the J1-J2 antiferromagnetic Heisenberg model. Without frustration �J2=0�, the amplitudes are radially
symmetric and fall off as 1 /r3 in the bond length. As the frustration increases, there are precursor signs of
columnar or plaquette valence bond solid order: the bonds preferentially align along the axes of the square
lattice and weight accrues in the nearest-neighbor bond amplitudes. The Marshall sign rule holds over a large
range of couplings, J2 /J1�0.418. It fails when the r= �2,1� bond amplitude first goes negative, a point also
marked by a cusp in the ground-state energy. A nonrigorous extrapolation of the staggered magnetic moment
�through this point of nonanalyticity� shows it vanishing continuously at a critical value J2 /J1�0.447. This
may be preempted by a first-order transition to a state of broken translational symmetry.

DOI: 10.1103/PhysRevB.79.224431 PACS number�s�: 75.10.Jm, 75.40.Mg, 75.50.Ee

I. INTRODUCTION

In the early 1970s, a resonating-valence-bond �RVB�
wave function1 with nearest-neighbor �NN� bonds only was
proposed as a possible ground state for the quantum Heisen-
berg model on the triangular lattice.2,3 This short-ranged
quantum-disordered4,5 RVB state was conceived in analogy
with the spin-liquid state found in one dimension.6,7 The be-
lief was that classical 120° Néel order was unlikely to sur-
vive in the presence of strong quantum fluctuations.

This conjecture ultimately proved incorrect. Like most
other low-coordination-number antiferromagnets,8,9 the tri-
angular system is magnetically ordered at zero
temperature.10–12 Consequently, its ground state cannot be
described in a basis of short bonds, since long-range corre-
lations require the inclusion of valence bonds on all length
scales.13

A generalization of the RVB state that includes long
bonds was later proposed by Liang, Doucot, and Anderson
for use as a variational wave function in the square-lattice
Heisenberg model.14 Their idea was to factorize the weight
associated with each valence-bond configuration into a prod-
uct of individual bond amplitudes that depend only on the
vector r connecting bond end points. Unlike the NN-bond
RVB which is unique, the long-range version is a family of
states parameterized by the bond distribution function h�r�.
In spatial dimension d=2, the RVB wave function has ex-
pressive power to describe both a magnetically ordered phase
and a featureless quantum disordered phase.14,15 It may be a
good variational wave function for systems in which antifer-
romagnetism is killed by the addition of frustrating interac-
tions.

As a practical matter, optimizing the bond amplitudes nu-
merically is not straightforward. The number of independent
parameters is of the order of the system size and the energy
depends only very weakly on the amplitudes of the longest
bonds. Thus, obtaining well-converged results becomes in-
creasingly difficult for large lattices and scaling to the ther-

modynamic limit is unreliable. Lou and Sandvik16 have
made some progress by experimenting with different optimi-
zation schemes. They recently carried out an unbiased varia-
tional determination of h�r� for the square-lattice Heisenberg
model and were able to achieve lattice sizes up to 32�32.

Liang, Doucot, and Anderson circumvent the problems
associated with a macroscopic number of degrees of freedom
by assuming a functional form for h�r�. They vary the am-
plitudes of only a few short bonds and fix the remainder
under the assumption of a radially symmetric bond-length
distribution and algebraic decay at long distances.14 For local
nonfrustrating interactions, this assumption turns out to be
essentially correct.17 Nonetheless, their choice of functional
form is ad hoc and there is nothing in their approach that
provides insight into how the amplitudes might change when
competing interactions are introduced.

In this paper, we describe an alternative method for cal-
culating the bond amplitudes that requires at most a few
variational parameters. The utility of the method is tested by
applying it to the J1-J2 model. As in Ref. 14, we make strong
assumptions about the form of the bond distribution. In our
case, however, the choice of functional form for h�r� is
guided by a master equation that mimics the reconfiguration
of bond amplitudes induced by the evolution operator.

The J1-J2 model describes a system of spin-half moments
arranged on a square lattice in which Heisenberg interactions
of strength J1, acting along the plaquette edges, compete
with frustrating interactions of strength J2 acting across the
plaquette diagonals. At J2 /J1=0 and J2 /J1=�, the model has
two- and four-sublattice Néel order, respectively. There is a
gapped intermediate phase in the vicinity of J2 /J1�0.5,
whose exact nature remains controversial. There has been
speculation about a possible spin-liquid state,18–23 but a state
with broken translational symmetry now seems more likely.
The leading candidate is a valence-bond solid �VBS� with
either columnar24–27 or plaquette28–31 order.

The extent of the intermediate phase has been determined
to about one digit of precision. Exact diagonalization on
small clusters32 puts the lower critical point at J2 /J1
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=0.34�4� but this appears to be an underestimate. Bond-
operator calculations33,34 based on the columnar VBS predict
0.38�J2 /J1�0.62 for the region of stability and series
expansions35,36 from the magnetic side give 0.4�J2 /J1
�0.6. A quantum Monte Carlo study,37 in which stochastic
reconfiguration is used to partially alleviate the sign problem,
reports a transition to a gapped state at J2 /J1�0.4.

It has been established from energy-level crossings in se-
ries expansion that the transition at the upper critical point is
first order.38 No such crossings have been detected at the
lower critical point at least within the numerical accuracy
that can be achieved. In most of the studies cited above, it is
implicitly assumed that the transition at the lower critical
point is second order. If that is true—and if the intermediate
phase is indeed bond ordered—then the lower critical point
may constitute a deconfined quantum critical point, as envi-
sioned by Senthil et al.39

The fact that bond-operator methods indicate a high den-
sity of triplet modes near a deconfined quantum critical
point40 but only a low density near the critical point of the
J1-J2 model33 leaves room for doubt. Indeed, a recent series-
expansion study points to a first-order transition at J2 /J1
�0.43 on the basis of an energy functional computed for a
fictitious translational-symmetry-breaking field.41 This is
supported by the argument due to Chubukov42 that a continu-
ous transition is only possible when a third-nearest-neighbor
interaction J3�0 is present.

The results reported here cannot settle this question with
any certainty but they do appear to be more consistent with a
first-order Néel-VBS transition.

II. MASTER EQUATION FOR FACTORIZABLE RVB
BOND AMPLITUDES

The spin-rotation-invariant �total spin S=0� ground state
of a system of 2N spin-1

2 moments can be written as a su-
perposition of valence-bond states.43,44 The simplest RVB
ansatz is to assume that the weight given to each bond con-
figuration is a product of individual bond amplitudes

�h� = �
v

�� h�r�	�v� . �1�

Here the sum is over all partitions of the lattice into N singlet
pairs, and the product is over all vectors r drawn between
valence-bond end points. �Anderson’s NN-bond RVB corre-
sponds to h�r�=���r�−1�.	 In the special case of a nonfrus-
trated model on a bipartite lattice, the amplitudes h�r� are
real and nonnegative and strictly zero whenever r connects
valence bonds in the same sublattice. See Fig. 1. This is just

a restatement of the Marshall sign theorem.45

One way to compute the h�r� values appropriate for a
given model is to consider the �-dependent family of states

�h���� = e−�F̂ĤF̂�h�0�� , �2�

where Ĥ is the Hamiltonian of interest and F̂ is an operator
that projects onto the space of factorizable RVB wave func-
tions. In each time step d�, some fraction of the bond ampli-
tude is reapportioned as bonds are created and destroyed.
Correlations between bonds that go beyond the RVB frame-
work are prevented from accumulating. This process is gov-
erned by a master equation that describes how the distribu-
tion h�r� evolves toward its steady-state solution. Note that
the wave function that emerges in the �→� limit is not

strictly equal to the projection F̂��� of the true ground state
���, nor is it equal to the variationally determined state �h�
that minimizes E= 
h�Ĥ�h� / 
h �h�. Nonetheless, all three are
very similar to one another.46

The key observation is that the valence-bond basis is
closed under operation by the Heisenberg interaction. Oper-
ating on an existing bond simply leaves the bond as is �and
the distribution h�r� unchanged	 whereas operating between
two bonds maps them to their complementary tiling:

�1

4
− Si · Sj��i, j	 = �i, j	 , �3�

�1

4
− Si · Sj��i,l	�k, j	 =

1

2
�i, j	�k,l	 . �4�

Here �i , j	= 1
2

��↑i↓j�− �↓i↑j�� denotes a singlet formed from
the spins at sites i and j. The effect of Eq. �4� is depicted in
Fig. 2.

For the NN Heisenberg model on a d-dimensional
�hyper-�cubic lattice, the master equation is

ḣ�r� = �
a
��r,a + �

r�,r�

�r�+r�−a,rh�r��h�r��� − 2zh�r� , �5�

where ḣ=�h /��, z=2d is the coordination number, and a
ranges over all NN vectors. This is correct only insofar as
h�r� accurately measures how often a bond of type r appears
in the superposition of valence-bond configurations making
up the RVB state. Geometrical tiling constraints, which are
increasingly important at low coordination number, have

FIG. 1. Spins on the A sublattice �solid circles� and B sublattice
�open circles� are grouped into pairs forming singlets. Each pairing
configuration is characterized by a set of directed bonds connecting
A sites to B sites.

��

���

���� ������� �

�����

FIG. 2. �Color online� A nonfrustrating Heisenberg interaction,
indicated by the dotted �red� line, is applied between sites in oppo-
site sublattices. The resulting reconfiguration creates one valence
bond where the interaction was applied and another between the
two remaining end points.
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been ignored. Nonetheless, this level of approximation al-
lows us to proceed analytically.

Equation �5� conserves the unit normalization of the total
weight

�
r

ḣ�r� = z + z��
r

h�r��2
− 2z�

r
h�r� = 0. �6�

The AB character of the bonds is also a constant of the mo-
tion. If we start with a distribution h�r� that is nonzero only
when r connects sites in opposite sublattices, then h�r� will
also have this property at all subsequent �.

A somewhat stronger property of the flow is that all
weights associated with bonds of even Manhattan length
�r�= �r1�+ �r2�+ ¯ �rd�, namely the AA or BB bonds, are
driven to zero. This is a straightforward consequence of an
asymmetry in the reconfiguration rules �even,odd�
→ �even,odd�, �odd,odd�→ �odd,odd�, and �even,even�
→ �odd,odd�. This is yet another manifestation of the Mar-
shall sign rule.

Accordingly, for �→� there are no bonds connecting
sites in the same sublattice and all bonds have odd Manhat-
tan length. We are thus free to impose the convention that the
vector character of all bonds is directed from A to B �as
anticipated in Fig. 1�. This means that the bond amplitude
function has a Fourier expansion

h�r� =
1

N
�
q

eiq·rhq, �7�

where the wavevector sum ranges over a reduced “magnetic”
Brillouin zone, equal to the standard Wigner-Seitz cell
modulo Q= �� , . . . ,��. One finds that the Fourier transform
of Eq. �5� is a simple polynomial in hq,

1

z
ḣq = 	q + 	qhq

2 − 2hq, �8�

whose stationary distribution is

hq =
1 − �1 − 	q

2�1/2

	q
. �9�

Here 	q= �1 /d��cos q1+ ¯cos qd� is the Fourier transform of
the NN matrix. In real space the long-distance behavior is
given by

h�r� =
2

��1 + r2�
�d = 1� �10�

h�r� =
2

2��1

2
+ r2�3/2 �d = 2� �11�

as shown in Fig. 3. In two dimensions, the bond amplitudes
are almost perfectly radially symmetric beyond a few lattice
spacings. The general behavior for higher dimensions is
h�r���1 /d+r2�−�d+1�/2�r−�d+1�.

III. FRUSTRATING INTERACTIONS

As we emphasized in the previous section, any model on
a bipartite lattice whose interactions are nonfrustrating with

respect to two-sublattice Néel order can be described in a
basis consisting of AB valence bonds only.47–49 Two special
features of the AB basis are that �i� the overlap between any
two states is strictly positive50 and �ii� there is an exact cor-
respondence between the Marshall sign rule and the positiv-
ity of all the RVB bond amplitudes.

We now argue that, even with the addition of frustrating
interactions, one can still choose to work exclusively in the
AB basis. According to Eq. �3�, a frustrating interaction ap-
plied between sites in the same sublattice transforms two AB
bonds into one AA and one BB bond. But since valence
bonds are nonorthogonal, we can take advantage of the over-
completeness relation

�i,k	�j,l	 = �i, j	�k,l	 − �i,l	�k, j	 �12�

to eliminate each of the unwanted bonds, yielding a new
update rule

�1

4
+ Si · Sk��i,l	�k, j	 =

1

2
�i, j	�k,l	 , �13�

where i ,k�A and j , l�B. See Fig. 4. There is no diagonal
operation analogous to Eq. �3�.

Following Eq. �13�, a model with NN Heisenberg interac-
tions of strength J1 and next-nearest-neighbor �NNN� inter-
actions of strength J2 has the bond amplitude master equa-
tion

����

�

16

32

64

128

256

10 102 103 1041

1

10−2

10−4

10−6

10−8

512

1024

2048

4096

8192

1D linear chain

2D square lattice

FIG. 3. �Color online� The bond amplitude functions predicted
for the linear-chain �upper, blue points� and square-lattice �lower,
green points� Heisenberg models are plotted for various system
sizes. The numerical labels indicate the linear size L. Points corre-
sponding to larger values of L are drawn darker. The solid lines
show the analytical results given in Eqs. �10� and �11�.

�� ���

�� � ������

��� � ������

FIG. 4. �Color online� A frustrating Heisenberg interaction ap-
plied between two A sublattice sites, indicated by the dotted �red�
line, has the effect of exchanging the two valence-bond end points.
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ḣ�r� = �
a
��r,a + �

r�,r�

�r�+r�−a,rh�r��h�r��� − 2zh�r�

+
J2

J1
��

ã
�

r�,r�

��r�−ã,r + �r�+ã,r	h�r��h�r�� − 2z̃h�r�� ,

�14�

where ã ranges over all NNN vectors. �We use a tilde to
distinguish NNN quantities from NN ones.� This differs from
Eq. �5� by a term proportional to J2 /J1.

Fourier transformation of Eq. �14� leads to

1

z
ḣq = 	q + 	qhq

2 − 2�1 + g�1 − 	̃q�	hq. �15�

This has a steady-state solution

hq =

q − �
q

2 − 	q
2�1/2

	q
, �16�

where


q = 1 + g�1 − 	̃q� and g = �z̃/z��J2/J1� . �17�

In dimension d�1, the coordination numbers are z=2d, z̃
=2d and the connection matrices have Fourier transforms
	q= 1

d�k=1
d cos qk and 	̃q=�k=1

d cos qk.
Figure 5 illustrates the real-space distribution correspond-

ing to Eq. �16� for several values of g in two dimensions.
When g�0, the long-range behavior is h�r��r−3, as in Eq.
�11�. When g�0, the radial symmetry is reduced to the C4
symmetry of the square lattice and the amplitudes begin to
accumulate along the principal axes, especially in the r
= �1,0� bond. Contrary to our expectations, the distribution
does not become uniformly more short ranged as g increases.
Along the principal axes, it actually becomes longer ranged;
the exponent of the algebraic decay steadily decreases from 3
�at g=0� to 1.5 �at g=0.5�. This looks nothing like the h�r�
�r−p spin liquid found at p�3.3.14,15

The Marshall sign rule is obeyed in the J1-J2 model up to
relatively large values of the frustration parameter.51–53 At
the level of approximation employed here, the bond ampli-
tudes are all positive up to gM =0.323 158, the coupling at
which the amplitude of the r= �2,1� bond passes through
zero. A sign change in h�2,1� at large frustration has also
been observed by Lou and Sandvik in their unbiased calcu-
lation.

Since there is already some ambiguity in the master equa-
tion because of the neglect of geometric constraints, we will
treat g as a variational parameter. In other words, we will
allow the relative weighting between the frustrating and non-
frustrating channels to deviate from g= �z̃ /z��J2 /J1� as the
energy dictates.

In principle, the variational approach can be expanded to
include farther-neighbor moments defined by

	q
 =

1

d! �
��Sd

�
n=1

d

cos���n�kn� . �18�

Here the index  is an ordered d-tuple of natural numbers
and Sd is the set of permutations on d elements. There will
be a variational parameter g for each included moment in
terms of which the amplitude distribution is

hq =
� − �q − ��� − �q�2 − �q

2	1/2

�q
, �19�

where

�q = �
even

g	q
, and �q = �

odd
g	q

. �20�

The � value is fixed by the requirement that hq=0=1. The
summations in Eq. �20� are over all  vectors having even
and odd Manhattan length up to some cutoff, ���0. For
our numerical work on the J1-J2 model, only the = �1,0�
and = �1,1� components are kept.

FIG. 5. �Color online� The bond amplitudes h�r� are depicted from left to right for the values g=0,0.2,0.32,0.45,0.499 99. The top row
shows the subset of bonds up to length �16,15� for an L=256 square lattice. The bottom row is a magnified view emphasizing the short-range
bonds up to �6,5�. The position of each circle marks the end point of a bond whose other end point is at the origin. The area of each circle
is proportional to �h�r��r3/2. Filled �black� circles denote a positive value and open �red� circles a negative one. For g�0, the bond amplitudes
are radially symmetric and positive definite and fall off as r−3. As g increases, the distribution becomes increasingly asymmetric. The �2,1�
bond steadily decreases in magnitude and vanishes at gM =0.323 158. In the limit g→0.5, the bonds along the x and y axes become
extremely long ranged, h�r ,0�=h�0,r��r−3/2. For g�0.5, the bond amplitudes are complex.
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IV. RESULTS FOR THE J1-J2 MODEL

We work with an RVB trial wave function whose weights
are factorized as in Eq. �1�. The bond amplitudes are taken
from the Fourier transform of Eq. �16�. These depend only
on the size of the lattice and on a single variational parameter

g, which is fixed by minimizing E�g�= 
Ĥ�. Expectation val-

ues of an operator Ô in the trial state, written as


Ô� �

h�Ô�h�

h�h�

=
�v,v�

Wv,v�

v�Ô�v��


v�v��

�v,v�
Wv,v�

, �21�

can be interpreted as an ensemble average of the estimator


v�Ô�v�� / 
v �v�� in a fluctuating gas of valence-bond
loops.47,54 Over the range g�gM, the bond amplitudes are all
strictly positive and thus the sampling weight

Wv,v� = 
v�v���� h�r�	�� h�r��	 �22�

has no sign problem associated with it.
Numerical evaluation of the expectation values is carried

out using a worm algorithm55 adapted to the valence-bond-
loop gas.56 This method is stochastic in nature but asymp-
totically exact. �It is distinct from the commonly used
projected-BCS technique in which a superconducting trial
state is Gutzwiller projected onto the subspace of exactly one
particle per site.57–60�

Figure 6 shows the NN and NNN spin correlations com-
puted as a function of g for finite lattices up to linear size
L=128. These data are extrapolated to the thermodynamic
limit by assuming O�L−3� leading corrections. A weighted
sum of the two g-dependent correlations gives the variational
energy

E�g� =
J1

2N
�

r
�
Sr · Sr+�1,0�� +

J2

J1

Sr · Sr+�1,1��� . �23�

Having computed E�g� to high accuracy on a dense grid of g
values, we are able to construct a smooth function Eint�g� by
interpolation. The optimal value of g is then found by solv-
ing Eint� �gmin�=0. The dependence of gmin on J2 /J1 is shown
as an inset in the bottom panel of Fig. 6. Back substitution of
gmin into Eq. �23� gives the ground-state energy in terms of
the ratio of exchange couplings. We find that at all accessible
values of J2 /J1 the optimized wave function is of consider-
ably lower energy than the short-range Anderson RVB state.

As is clear from the top and middle panels of Fig. 6, both
the NN and NNN spin correlations exhibit a cusp at g=gM
�or J2 /J1=0.418� in the L→� limit. This point of nonanaly-
ticity separates regions with markedly different behavior. For
g�gM, E��g� has no roots; we do not believe that this region
is physically meaningful.

Figure 7 shows the staggered magnetic moment

M =
1

2N��
r,r�

�− 1��r−r��
Sr · Sr���1/2
�24�

plotted as a function of both g and J2 /J1. In this case, the
thermodynamic limit is achieved by means of an O�L−2� ex-
trapolation. We cannot say how the magnetism evolves be-
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FIG. 6. �Color online� �Top� The expectation value of the NN
spin correlations S1=−�1 /2N��r
Sr ·Sr+�1,0�� is plotted as a function
of the variational parameter g. A unique symbol represents data
computed for each L�L system; see the legend. Error bars �red�
denote the L→� extrapolation. �Middle� The NNN spin correla-
tions S2= �1 /2N��r
Sr ·Sr+�1,1�� are plotted in the same way. �Bot-
tom� The energy density E /J1=−S1+ �J2 /J1�S2 in the thermody-
namic limit is compared to estimates �black dots� due to Gochev
�Ref. 61�. The dashed line shows the energy of the short-bond-only
RVB state �cf. Ref. 62�. The inset shows the g that minimizes the
variational energy.
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yond J2 /J1=0.418. Nonetheless, by continuing the trend es-
tablished in the region where the Marshall sign rule is
obeyed �using a polynomial fit of the M2 data�, we estimate
that the staggered moment—if it evolves continuously—
vanishes at a critical coupling J2 /J1=0.447.

V. DISCUSSION

The master equation approach applied to the J1-J2 model
leads to an RVB trial wave function whose bond amplitudes
depend on a single variational parameter, g. Wherever the
Marshall sign rule holds, we are able to compute the proper-
ties of the RVB state to very high accuracy for large lattices
�up to L=128 easily on a laptop� and thus to extrapolate
measured values to the thermodynamic limit. For the NN
Heisenberg model �J2=0�, the energy and staggered magne-
tization of the best variational state �at g=−0.0484� extrapo-
late to E=−0.669 748 and M =0.3086. These differ by

0.047% and 0.52% from the exact results E=−0.669 437�5�
and M =0.3070�3� obtained from quantum Monte Carlo.9

As a function of frustration, the antiferromagnetic order
dies out quite slowly. When the Marshall sign rule finally
breaks down �at J2 /J1=0.418�, the staggered moment has
decreased only to M =0.1114, about 36% of its unfrustrated
value. This does not appear to be consistent with a continu-
ous transition. One point of consensus for this model is that
a gapped state appears around J2 /J1�0.4. Thus, the fact that
the magnetization is still large near this value suggests that
the transition is first order. In comparison to other situations
where a Néel-VBS transition is known to occur,63,64 what we
observe here is much more like the situation in Ref. 63,
where the staggered magnetization decreases only modestly
and then collapses abruptly at a first-order critical point.

Of course, this line of reasoning is not sufficiently rigor-
ous to establish the order of the transition and we cannot rule
out a deconfined quantum critical point. Since there are no
exact results on large lattices, we do not know how well the
optimized RVB wave function approximates the true ground
state. �For 4�4 the agreement is quite good:16 the overlap is
0.9998 for the unfrustrated case and 0.996 for J2 /J1=0.4�.
We have estimated that the magnetic order vanishes at
J2 /J1=0.447 in a continuous scenario, which apparently
“overshoots” the opening of the spin gap at J2 /J1�0.4. It is
hard to say whether these values are truly noncoincident
since their uncertainties are difficult to quantify. Moreover,
the decay of the staggered magnetization may be artificially
slow because of the failure of the RVB state �which is trans-
lationally invariant� to capture the incipient dimer correla-
tions near the transition.

The sign problem in this model �for J2 /J1�0.418� turns
out not to be terribly severe. Much more catastrophic is that
the master equation itself breaks down along with the Mar-
shall sign rule because of the assumption that h�r��0 rep-
resents the probability of finding a bond of type r. Once any
of the amplitudes becomes negative, the reasoning that led to
Eq. �14� is no longer correct. The breakdown could perhaps
be avoided if we were to use an exact numerical implemen-
tation of Eq. �2� to find the �→� limit rather than an ana-
lytical ansatz. More likely though, the failure of the master
equation is related to the inability of the RVB state to accom-
modate bond-bond correlations—except indirectly by
strengthening the C4 symmetry of h�r�, as seen in Fig. 5.

The master equation approach works remarkably well in
guiding our choice of the RVB bond amplitudes. Where it
can be checked �J2=0�, the accuracy of the wave function
rivals that of unbiased optimizations but with an enormous
computational saving associated with reducing the number of
variational parameters from N to 1. Including variational pa-
rameters for a few additional modes �as described at the end
of Sec. III� would improve the accuracy further. In order to
handle the most disruptive effects of frustrating interactions,
however, it will be necessary to move to the next level of
approximation and to consider RVB states whose weights
factorize into amplitudes for pairs of bonds. Obtaining an
analytical master equation for the two-bond amplitude hij;kl,
as we did in this paper for the single-bond amplitude hij
=h�rij�, is probably not feasible. Nonetheless, for variational
calculations, it may be enough to put in by hand some bond-
bond contribution, e.g.,
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FIG. 7. �Color online� �Top� The staggered magnetic moment M
is plotted as a function of the variational parameter g. The data
computed for a particular L�L system are shown according to the
legend. Error bars �red� indicate the extrapolated L→� value. The
data for g�gM is unreliable for reasons elucidated in the main text.
The solid line is a polynomial fit of the L=�, g�gM points. �Bot-
tom� The g�gM data from the top panel is replotted with a new
horizontal scale. The Marshall sign rule breaks down at 0.418 and
the magnetic order dies at 0.447.
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hij;kl = h�rij�h�rkl� � �1 + U���rij + rkl�����ril + rkj��	 ,

�25�

that is compatible with the expected VBS pattern �here, the
columnar state at large U�.
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